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Abstract
The boundary element method (BEM) is so extended as to treat two-dimensional (2D) electron
systems in the presence of pointlike islands of magnetic moment. In the present paper, the
pointlike magnetic scatterer is modeled by a cylindrical barrier. The radius of the cylindrical
barrier is assumed to be so small, keeping the volume definite, that the pointlike magnetic
scatterer is approximated by a Dirac δ function. Then, we make an approximation on the BEM
formulation, wherefore we derive a novel numerical method for electron transport in the
presence of pointlike magnetic scatterers. In a numerical implementation of the method
extended here, the numerical errors of probability conservation are less than 1% for any cases
and the computational costs, that is, the required memory amount and CPU time, are much
reduced. As examples, the proposed method is applied to transport problems through a quantum
wire with four pointlike magnetic scatterers. It is clearly shown that magnetic scatterers, even
pointlike magnetic moments, lead to spin flip-flop, localization and resonance.

1. Introduction

For two decades, the electron transport through a nanostruc-
ture such as a quantum dot has attracted much interest. In re-
cent years, a variety of spin-dependent transport phenomena
in magnetic nanostructures like magnetic multilayers and mag-
netic tunnel junctions has been extensively investigated [1, 2].
Magnetic superlattices are fabricated by piling up magnetic and
non-magnetic metallic thin films alternately with thicknesses
of the order of one nanometer. In such magnetic systems of
nanometer size, the interplay between spin and charge of elec-
trons provides unique transport phenomena, such as giant mag-
netoresistance of the magnetic tunnel effect. The electronics
using both the charge and the spin of an electron is called spin-
tronics and shows rapid development [3–5]. For such electron
systems with a magnetic barrier region, only simple cases have
been investigated theoretically [6, 7].

On the other hand, magnetoresistance anomalies were
experimentally observed in 2D electron systems in which
periodic potential modulation is introduced artificially, that is
a periodic superstructure or an antidot array 15 years or more

before [8–10]. For example, oscillation of magnetoresistance
as a function of magnetic field strength, the so-called Weiss
oscillation, anomalous low-field Hall plateaus and a quenching
of the Hall effect about zero magnetic field are observed. In
such a case, we can expected that an electron system with
an array of magnetic scatterers shows novel phenomena in
electron transport.

Actually, a spatially modulated vector potential has been
introduced into a 2D electron gas by Xue and Xiao, Yagi and
Iye, and Peeters and Vasilopoulos et al [11–14]. Then, they
have observed a magnetic analogue of the Weiss oscillation.
Their strength of the field modulation is so weak that it can be
treated as a perturbation. Therefore, no spin flip is observed in
such cases.

In the present paper, we attempt to treat theoretically
electron transport in a 2D electron gas with a lot of magnetic
scatterers [15]. In particular, we focus on the spin flip-flop of
a conducting electron.

Now, we consider pointlike magnetic scatterers. Then, the
BEM is extended for the case that a lot of pointlike magnetic
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moments exist in a ballistic 2D electron system [16]. In the
proposed method, additional unknown variables of only the
same number as that of the scatterers are required, whereas
both memory and CPU time are saved.

The method extended here is applied to a quantum
wire with pointlike magnetic scatterers as an example of
the application. Transmission and reflection spectra are
computed for some cases and the electron density plots
allow us to see directly that magnetic scatterers, even several
pointlike magnetic moments, lead to spin flip, localization and
resonance.

2. Boundary integral equation

We assume that the conduction electrons are polarized in the
direction of the z axis, that is, perpendicular to the 2D electron
systems. According to Slonczewski [6], the electron wave
propagation in a system with magnetization is described by the
Schrödinger equation in dimensionless form as

(−∇2 − σ · M(r)
)
(
ψ+
ψ−

)
= k2

(
ψ+
ψ−

)
, (1)

where ψ+ and ψ− are the wavefunctions for up spin or down
spin, respectively, k is the wavenumber and σ = (σx , σy , σz)

are the Pauli spin matrices. The vector M(r) = (Mx (r),
My(r), Mz(r)) is the magnetization or the molecular field of
scatterers.

If we employ the usual expression for the Pauli spin
matrices, that is:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
,

σz =
(

1 0
0 −1

)
,

equation (1) becomes

−∇′2ψ±(r′)− (
Mx (r

′)∓ iMy(r
′)
)
ψ∓(r′)

= (
k2 ± Mz(r

′)
)
ψ±(r′). (2)

By means of the Green function G(r, r′; ε) satisfying the
equation

−∇′2G(r, r′; ε) = εG(r, r′; ε)+ δ(r − r′), (3)

and the boundary condition for the outgoing wave, the
wavefunction ψ±(r) within a closed boundary is expressed by
the boundary integral:

ψ±(r) =
∮ [

G(r, r′; k2)∇′ψ±(r′)

− ψ±(r′)∇′G(r, r′; k2)
]

· n dS′

+
∫

G(r, r′)
(
M∓(r′)ψ∓(r′)± Mz(r

′)ψ±(r′)
)

dr′, (4)

where n is the unit outward normal vector on the boundary and
M±(r′) ≡ Mx (r

′)± iMy(r
′). The Green function G(r, r′; ε)

of equation (3) is given by the zeroth-order Hankel function of
the first kind as

G(r, r′; k2) = i

4
H (1)

0

(
k|r − r′|) . (5)

In order to apply the BEM, we need to evaluate the volume
integral of the last term on the right-hand side.

3. Approximation

Here, we consider N pointlike scatterers of the same small
scattering area. The scatterer is modeled by a cylindrical
barrier of finite height M±(R) and Mz(R), where a is the
radius of the cylindrical barrier, so that the total magnetization
is written as

M±(r) =
N∑

n=1

M±(Rn)a
2 1

πa2
θ(a − |r − Rn|)

Mz(r) =
N∑

n=1

Mz(Rn)a
2 1

πa2
θ(a − |r − Rn|),

(6)

where Rn is the position vector of the center of the nth
scatterer, M±(Rn) ≡ Mx(Rn) ± iMy(Rn) is defined and
θ(x) is the unit step function. We make the radius a small
enough keeping Ma2 ≡ |M±|a2 and Mza2 constant, since
now we are considering pointlike scatterers. The scattering
potential (1/πa2)θ(a − |r − Rn|) may then be approximated
by Dirac’s δ function δ(r − Rn). Therefore, the term
on the right-hand side of equation (4) can be evaluated
as
∫

G(r, r′)
(
M∓(r′)ψ∓(r′)± Mz(r

′)ψ±(r′)
)

dr′

=
N∑

n=1

M∓(Rn)a
2
∫

G(r, r′)

× 1

πa2
θ(a − |r′ − Rn|)ψ∓(r′) dr′

± Mz(Rn)a
2
∫

G(r, r′)

× 1

πa2
θ(a − |r′ − Rn|)ψ±(r′) dr′

≈
∑

n

G(r,Rn)
(M∓(Rn)a

2ψ∓(Rn)

± Mz(Rn)a
2ψ±(Rn)

)
. (7)

In the summation of equation (7), if r is set on Rm ,
G(Rm,Rm) is divergent due to the singularity of the Green
function. Therefore, when we take r as Rm , we need to
evaluate the volume integral in equation (4):

1

πa2

∫
G(Rm, r

′)θ(a − |r′ − Rm|)ψ±(r′) dr′

= 1

πa2

∫
i

4
H (1)

0 (k|Rm − r′|)θ(a − |r′ − Rm|)ψ±(r′) dr′

more accurately in order to avoid the divergence.
Now, considering the small scattering radius a, we

can reasonably evaluate the Hankel function in the integral
as

H (1)
0 (z) ≈ 1 + i

2

π
(ln z + γ − ln 2) , (8)

2
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where γ is Euler’s constant [17]. The wavefunction ψ±(r′)
in the integrand may be taken outside the integral, since the
wavefunction ψ±(r′) in the integrand should not vary very far
from the value at the center Rm within the range in which
the step function has a definite value. We may then write
ψ±(r′) ≈ ψ±(Rm), so that the volume integral is estimated
as

1

πa2

∫
G(Rm, r

′)θ(a − |r′ − Rm|)ψ±(r′) dr′

≈ i

4πa2
ψ±(Rm)

∫
H (1)

0

(
k|r′ − Rm|)

× θ(a − |r′ − Rm|)d (
r′ − Rm

)

≈ i

4πa2
ψ±(Rm)

×
∫ a

0

{
1 + i

2

π
(ln r + ln k + γ − ln 2)

}
2πrdr

= − 1

4π

(
2 ln

ka

2
+ 2γ − 1 − iπ

)
ψ±(Rm). (9)

Therefore, when r is taken as Rm in equation (7), G(Rm,Rm)

is replaced by −1/(4π)[2 ln(ka/2)+ 2γ − 1 − iπ].
Finally, the wavefunction ψ±(r) is expressed by

ψ±(r) =
∮ [

G(r, r′)∇′ψ±(r′)− ψ±(r′)∇′G(r, r′)
]

·n dS′

+
∑

n

G(r,Rn)
(M∓(Rn)a

2ψ∓(Rn)

± Mz(Rn)a
2ψ±(Rn)

)
, (10)

where

G(r,Rn) ≡

⎧
⎪⎪⎨

⎪⎪⎩

i

4
H (1)

0 (k|r − Rn|) , r �= Rn

− 1

4π

(
2 ln

ka

2
+ 2γ − 1 − iπ

)
, r = Rn .

(11)
Thus, in order to involve the effect of the scatterers, we just
sum up G(r,Rn)(M∓(Rn)a2ψ∓(Rn)±Mz(Rn)a2ψ±(Rn)).

4. Rotation of magnetic moment

The 2D component of the magnetization at Rn can be
expressed as

M±(Rn) = Mx(Rn)± iMy(Rn) = M(Rn) exp(±iθRn).

(12)

We consider the case that the 2D component of the
magnetization rotates by the same angle δ within the x–y
plane. Then, we have

M′
±(Rn) = M(Rn)e

±i(θRn +δ),

Figure 1. A model of a quantum wire with pointlike magnetic
scatterers.

wherefore equation (10) can be rewritten as

ψ±(r) =
∮ [

G(r, r′)∇′ψ±(r′)− ψ±(r′)∇′G(r, r′)
]

·n dS′

+
∑

n

G(r,Rn)
(
ψ∓(Rn)M(Rn)e

∓i(θRn +δ)

± ψ±(Rn)Mz(Rn)
)

ψ±(r)e±i δ2 =
∮ [

G(r, r′)∇′ψ±(r′)e±i δ2

− ψ±(r′)e±i δ2 ∇′G(r, r′)
]

· ndS′

+
∑

n

G(r,Rn)
(
ψ∓(Rn)e

∓i δ2 M(Rn)e
∓iθRn

± ψ±(Rn)e
±i δ2 Mz(Rn)

)

ψ̃±(r) =
∮ [

G(r, r′)∇′ψ̃±(r′)− ψ̃±(r′)∇′G(r, r′)
]

·n dS′

+
∑

n

G(r,Rn)
(
ψ̃∓(Rn)M∓(Rn)

+ ψ̃±(Rn)Mz(Rn)
)
,

(13)

where ψ̃± ≡ ψ± exp(±iδ/2) are defined. Thus, rotation of the
whole magnetization never affects the quantum state.

In particular, supposing Mz(Rn) = 0 and the
magnetization in the plane has turned in the same direction
at every point, say θRn = θc, the integral equations depend
only on the magnitude of magnetization M(Rn). It is easily
confirmed by setting δ = −θc.

5. Application

Making use of equation (10), we can extend the BEM so as
to deal with scattering problems by magnetic moments. Let
us apply the extended BEM to a model of a quantum wire
shown in figure 1. We assume that an electron wave of unit
amplitude with up spin is incident from the left and the width
of the quantum wire d is a length scale.

5.1. Numerical implementation

Supposing infinitely high potential outside the wire, the
wavefunction vanishes on the wall, that is, the portion 	2. The

3
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Figure 2. The reflection and transmission spectra of the quantum
wire with four pointlike magnetic scatterers of a = 0.05,
Ma2 = 700, Mza2 = 0 and α = 1.

wavefunctions on the portions 	1 and 	3 are expanded in terms
of the eigenfunctions, respectively.

We can summarize the expression of the wavefunction on
each portion as

	1: ψ±(r) = δ±,+ sin

(
απ

d

(
y + d

2

))
exp(ikαx)

+
∑

β

r±,αβ sin

(
βπ

d

(
y + d

2

))
exp(−ikβx)

	2: ψ±(r) = 0

	3: ψ±(r) =
∑

γ

t±,αγ sin

(
γπ

d

(
y + d

2

))
exp(ikγ x),

(14)

where k2
α = √

k2 − (απ/d)2 and δ±,+ is the Kronecker delta
symbol, being unity if δ+,+, otherwise zero. The quantities
t±,αγ and r±,αβ are the transmission and reflection coefficients
of spin ±, respectively.

On the portions 	1, 	2, 	3 and 	4, unknown variables
are r±,αβ , ∂ψ±/∂n, t±,αγ and ψ±, respectively. We solve
simultaneous equations for these unknown variables. Then, we
can calculate the wavefunction within a closed boundary by
means of equation (10).

The reflection and transmission probability of up spin and
down spin are defined by

R± =
∑

β

kβ
kα

|r±,αβ |2, T± =
∑

γ

kγ
kα

|t±,αγ |2. (15)

5.2. Numerical results

As an example computation, a quantum wire with the same
four magnetic scatterers is analyzed. We pay attention to
the energy dependence of the transmission and reflection
probabilities of each spin, that is transmission and reflection
spectra. At first, we see the case of a = 0.05, Ma2 = 700,
Mza2 = 0 and incident mode α = 1 as an example of a
very large magnetization, shown in figure 2. The spectra of
T+ and R+ in figure 2 have several peaks and dips. They are
attributed to resonant tunneling phenomena. On the other hand,

Figure 3. The reflection and transmission spectra of the quantum
wire with four pointlike magnetic scatterers of a = 0.05, Ma2 = 4,
Mza2 = 0 and α = 1.

Up Spin

Down Spin 0

4

Figure 4. The density plots of the probability density of the up and
down spin, |ψ±(r)|2 for kd = 4.6, where R+ ≈ 0.12, T+ ≈ 0.15,
R− ≈ 0.30 and T− ≈ 0.43.

both R− and T− almost vanish. This fact means that the up
spin and the down spin states are hardly coupled to each other.
It is because, supposing the value of M∓(Rn) is very large,
the absolute values of ψ∓ near the point Rn should become
small since they are determined consistently by equation (10).
An electron cannot enter the domains of large magnetization.
Therefore, it should be noted that a strong magnetic scatterer
behaves just like a strong potential scatterer.

Now, we consider magnetization of smaller intensity. The
reflection and transmission spectra for a = 0.05, Ma2 = 4
and Mza2 = 0 are shown in figure 3. In this case, the spectra
R− and T− take significant values and vary intricately, so that
we see that the up and down spin states are coupled. The
probability densities |ψ±|2 of up (+) and down spin (−) for
a = 0.05, Ma2 = 4 and Mza2 = 0 at peculiar points,
that is, kd = 4.6, 7.11 and 9.42, are plotted in figures 4–6,
respectively.

Figure 4 is for kd = 4.6 at which a very sharp dip appears
in R+. Here, we see a localized state trapped within the region
surrounded four scatterers for each spin. The electron wave
collides with the scatterers repeatedly, so that the transition in
the opposite spin is enhanced. Furthermore, electrons of both

4
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Up Spin

Down Spin 0

4

Figure 5. The density plots of the probability density of the up and
down spin, |ψ±(r)|2 for kd = 7.11, where R+ ≈ 0.14, T+ ≈ 0.01,
R− ≈ 0.03 and T− ≈ 0.82.

Up Spin

Down Spin 0

4

Figure 6. The density plots of the probability density of the up and
down spin, |ψ±(r)|2 for kd = 9.42, where R+ ≈ 0.05, T+ ≈ 0.95,
R− ≈ 0.00 and T− ≈ 0.00.

spins are localized on the sites of the scatterers. This is the
evidence that spin flip-flop of electrons occurs resonantly.

The probability densities for kd = 7.11, where a very
sharp peak is seen in T−, is presented in figure 5. In this
case, more than 80% of the incident wave transmits to the
right by the down spin. It should be noted that the probability
densities take remarkably large values around each scatterer.
The electron wave is localized within the surrounded region
for each spin as well as in figure 4, whereas we see a nodal
line. This fact makes us confirm that major peaks at both
kd = 4.6 and kd = 7.11 are attributed to the interference
in the longitudinal direction.

Now, we turn to discuss the cause of the slightly broader
minor peak at kd = 9.42. At the peak, the transmission
probability of up spin reaches 95%. In figure 6, the probability
densities for kd = 9.42 are shown. Here, we see that
the probability density of the up spin takes very small
values around the scatterers and has large values between the
scatterers even in the transverse direction. This means that the
electron wave merely feels the scatterers, so that it propagates
almost freely. Therefore, the wavenumber kd = 9.42 is

Figure 7. Asymmetric configuration of magnetic scatterers with
M1 = (0,m, 0) and M2 = (m, 0, 0).

Figure 8. The reflection and transmission spectra of the asymmetric
configuration for a = 0.05 and ma2 = 4.

attributed just to that of the fundamental stationary mode
between the scatterers located in a line with the transverse
direction.

It is considered that the existence of these localized states
evidently originates in the symmetry among scatterers. In
order to confirm that, we consider an asymmetric configuration
of magnetic scatterers as shown in figure 7. Namely, the
direction of two of the magnetic moments is changed. Figure 8
shows the reflection and transmission spectra for a = 0.05,
ma2 = 4 and α = 1. The major property is similar to that
of figure 3. However, the peaks and dips which are considered
to correspond to those in figure 3 shift to the lower side and
become shallow. Several new peaks and dips appear, which
cannot be seen in figure 3. For example, at kd = 8.37, a new
valley in T+ appears. The density plots of |ψ±|2 for kd = 8.37
are shown in figure 9. The probability density of the down spin
shows that the state is localized within the domain surrounded
by the four scatterers and has a nodal line in the longitudinal
direction and the transverse direction, respectively.

5.3. Calculation accuracy and calculation cost

In finishing this section, calculation accuracy and calculation
cost should be mentioned.

Conservation of probability is employed in order to
evaluate the accuracy of the numerical calculation. We have
already performed calculations in many cases including ones
of complicated boundary shapes by means of this method.
Surprisingly, an error of the order of 0.1% in conservation
of probability is realized for all of them in spite of the
approximation.

5



J. Phys.: Condens. Matter 20 (2008) 365208 Y Miyagawa and T Ueta

Up Spin

Down Spin

4

0

Figure 9. The density plot of |ψ±(r)|2 for kd = 8.37, where
R+ ≈ 0.05, T+ ≈ 0.63, R− ≈ 0.17 and T− ≈ 0.15.

The boundary is discretized into segments of 500 in typical
calculations shown in the present paper, where the length of
a segment is smaller than 1/8 of the wavelength. Then, the
CPU time needed to solve simultaneous equations about the
unknown variables on the boundary for a certain value of kd
is 15 min using a PC driven by a 3 GHz Pentium 4 processor
with a Intel FORTRAN compiler under Linux. Values of a
wavefunction within the boundary on a grid of 250 × 1000 are
calculable in 1.5 h.

These facts encourage us to apply this method to more
practical problems.

6. Conclusions and discussions

In the present paper, the boundary element method has
been extended in order to treat 2D ballistic electron systems
including a lot of pointlike magnetic scatterers. By modeling
the shape of a magnetic scatterer by a cylinder of very small
radius, we have performed the (2D) volume integral including
a wavefunction, Green function and magnetization, so that we
have derived the simultaneous integral equations in which the
up and down spin are coupled. In numerical implementations,
the equations have been discretized in terms of the boundary
element method.

The extended method has been applied to the concrete
problem, and it has been confirmed that the method realizes
very high calculation accuracy in spite of the approximation.
Thus, the method proposed here is powerful, convenient and
accurate to analyze the transport property of an electron system

with a number of small magnetic obstacles. Moreover, the
method is easily extended to a case in the presence of a uniform
magnetic field by combining with the method reported in [16].
The examples of applications are just a demonstration of the
method developed here, whereas the physically interesting
phenomena have also been discussed. Namely, it has been
shown that too strong a magnetization never makes the up and
the down spin states couple and that several weak pointlike
magnetic moments are enough to flip the spin state of a
propagating electron wave. Further physical analyses and
applications are now in progress. The results will be reported
elsewhere in the very near future.
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